

Climate and Oceans Support Program in the Pacific

ACCESS-S Workshop

MODULE: Statistics – mean, anomaly, median

- Mean / average
- Anomalies
- Median

Expected learning outcomes

• Understanding the mean, median and anomalies and how to calculate them

 $mean = \frac{Sum of all the observations}{Number of all observations}$

Means can be added if variable is cumulative (like rainfall)

Mean Jan to March rainfall = Jan mean + Feb mean + March mean

Means can be averaged if variable is not cumulative (like temperature)

 $Mean Jan to March maximum temperature = \frac{Jan mean + Feb mean + March mean}{3}$

Adding mean rainfall for Port Vila

Year	Jan	Feb	Mar	Jan-Mar
1998	141.2	204.9	531.1	877.2
1999	568.1	377.6	196.3	1142.0
2000	416.6	600.7	256.5	1273.8
2001	304.0	573.7	286.9	1164.6
2002	206.5	454.9	289.8	951.2
2003	130.7	098.6	144.0	373.3
2004	023.4	480.1	238.9	742.4
2005	200.4	133.0	195.4	528.8
2006	192.9	141.6	123.8	458.3
2007	211.1	368.4	406.5	986.0
2008	649.1	282.4	284.8	1216.3
2009	420.3	344.9	351.2	1116.4
2010	085.4	375.0	428.2	888.6
2011	325.4	345.8	182.0	853.2
2012	243.0	316.5	069.5	629.0
2013	102.1	211.9	290.1	604.1
2014	394.1	102.7	339.0	835.8
2015	365.0	421.4	792.8	1579.2
2016	024.8	053.1	119.5	197.4
2017	107.5	248.0	286.8	642.3
2018	181.5	194.0	156.5	532.0
2019	218.0	244.0	407.0	869.0
2020	112.2	204.3	320.7	637.2
Mean	244.5	294.7	291.2	830.4

Averaging mean minimum temperature for Melbourne Airport

anomaly = observation - mean

- The word "**anomaly**" is used to describe the difference between an observation and a measure of "average" of those observations, most commonly the mean
- It can be a **scaler** quantity (i.e. simply a number, positive or negative) or a vector (e.g. wind anomalies)
- Anomalies are used to determine how different or unusual a climate pattern or event may be
- E.g. the 2020 temperature anomaly is how much above or below the climatological average the temperature was

Annual mean temperature anomaly - Global (1850-2019)

Blue arrow A represents the long-term average wind at a location Red arrow B is the observed wind at the location

The **anomaly** = B – A is shown by **black arrow C**

Wind vector anomalies are used for tracking the trade winds

ACCESS-S predictions often use the Median because the mean does not always represent the population.

The median is the "middle" value in a data set.

Median Example 1:

Consider the following **nine** numbers: 3, 13, 7, 5, 21, 23, 39, 300, 500

Put numbers in numerical order: 3, 5, 7, 13, 21, 23, 39, 300, 500

Median is the middle number. Our middle number will be the fifth number: 3, 5, 7, 13, **21**, 23, 39, 300, 500

So the Median is 21, and the Mean is 101.2.

Extreme values can skew the mean but have little effect on the median.

© Commonwealth of Australia 2021. Bureau of Meteorology

Median Example 2:

Consider the following **eight** numbers: 3, 13, 7, 5, 21, 23, 23, 40

Put numbers in numerical order : 3, 5, 7, 13, 21, 23, 23, 40

Median is the middle number. We have two middle numbers: 3, 5, 7, 13, 21, 23, 23, 40

Median = (13 +21) / 2 = 17

17 was not in the list of numbers...but that is OK because half the numbers in the list are less, and half the numbers are greater.)

Suva, Fiji. January Rainfall Mean and median are similar

© Commonwealth of Australia 2021. Bureau of Meteorology

Kiritimati, Kiribati. January Rainfall Extreme values show up in the mean, not the median

Medians must not be added if variable is cumulative (like rainfall)

Median June to August rainfall \neq June median + July median + August median

Medians must not be averaged if variable is not cumulative (like temperature)

Median June to August maximum temperature $\neq \frac{June \ median + July \ median + August \ median}{3}$

Operations with the Median examples

Do not add medians

Rainfall for Nadi, Fiji

Year	Jun	Jul	Aug	Jun-Aug
2001	17.4	96.6	146.6	250.6
2002	53.2	102.8	48.5	204.5
2003	29.6	28.8	97.6	156.0
2004	69.9	59.2	256.2	385.3
2005	80.0	61.0	52.0	193.0
2006	39.9	35.6	104.4	179.9
2007	1.5	69.3	1.1	71.9
2008	50.1	73.2	2.9	126.2
2009	113.5	73.9	55.9	243.3
2010	4.6	33.5	22.0	60.1
2011	76.4	101.4	80.4	258.2
2012	311.9	32.7	66.3	410.9
2013	124.9	6.3	10.7	141.9
2014	1.3	13.3	0.0	14.6
2015	14.8	15.6	49.9	80.3
2016	28.1	13.4	197.0	238.5
2017	2.4	20.5	60.6	83.5
2018	53.3	0.5	5.5	59.3
2019	58.1	65.0	20.3	143.4
2020	32.5	59.7	17.3	109.5
Median	45.0	47.4	51.0	149.7

If we sum the individual medians for June, July and August, i.e. 45.0 + 47.4 + 51.9, we get **143.4**

This is different to the actual value of 149.7

If we **average the individual medians** for October, November and August, i.e. (24.0 + 24.3 + 26.0)/3, we get **24.8**

This is close but **not** equal to the actual value of **24.6**

Do not average medians

Mean maximum temperature for Sydney, Australia

Year	Oct	Nov	Dec	Oct-Dec
2001	24.0	23.5	26.2	24.6
2002	24.5	25.3	25.4	25.1
2003	21.6	22.7	26.0	23.4
2004	23.3	25.4	25.6	24.8
2005	24.3	23.9	28.6	25.6
2006	24.2	24.3	24.2	24.2
2007	25.0	23.5	24.7	24.4
2008	23.2	23.7	25.9	24.3
2009	21.4	26.1	25.5	24.3
2010	22.0	23.5	25.8	23.8
2011	22.2	25.2	23.1	23.5
2012	23.3	24.1	26.0	24.5
2013	25.7	24.0	26.4	25.4
2014	24.7	25.7	25.8	25.4
2015	24.9	26.2	26.1	25.7
2016	23.9	26.1	28.1	26.0
2017	24.0	23.8	27.8	25.2
2018	21.5	24.8	26.8	24.4
2019	24.4	26.6	26.8	25.9
Median	24.0	24.3	26.0	24.6

 $mean = \frac{Sum of all the observations}{Number of all observations}$

Means can be added if variable is cumulative (like rainfall)

Means **can be averaged** if variable is not cumulative (like temperature)

Mean is most representative of the data.

Discussion question: When have you used a mean?

The median is the "middle value" in a dataset.

The median is not skewed by extreme values

Discussion question: When have you seen the median being used?

anomaly = observation - mean

Anomalies are used to determine how different or unusual a climate pattern or event may be.

Anomalies can be a scalar or vector

Discussion question: When have you used an anomaly?