

Climate and Oceans Support Program in the Pacific

ACCESS-S Workshop

MODULE: Coupled Global Ocean-Atmosphere Climate Model Predictions in general

- What is a model?
- History of weather models
- Numerical weather prediction
- Model initialisation
- Difference between weather and climate models
- Ensemble predictions

Expected learning outcomes

- History of climate models
- General understanding of what is required to run a dynamical weather or climate model

These outcomes are important for understanding and interpreting ACCESS-S outputs and products

What's in a Model? Numerical Weather Prediction

Models are often simplified by the term Numerical Weather Prediction (NWP), but they also include oceans! Models use a coordinate system which **divides the planet into a 3D grid**.

Models are systems of **differential equations** based on the **laws of physics** which cover:

- fluid motion
- thermodynamics
- radiative transfer, and
- chemistry.

Models calculate in each grid cell:

- Winds
- Heat transfer
- Relative humidity
- Phase changes of water
- Surface hydrology

Each grid cell interacts with neighbouring cells to calculate information for the future. **Coupled models** include the atmospheric model and an ocean model.

Evolution of atmosphere over the Australian region from a single ACCESS-S forecast

The forecasts are created using a model that simulates the physics of the atmosphere, land and ocean and how they interact and evolve over time.

Run on a supercomputer

The ENIAC main control panel at the Moore School of Electrical Engineering operated by Betty Jennings and Frances Bilas. **NWP History**

1920s: Lewis Richardson used **pen and paper** to produce a six-hour forecast for the state of the atmosphere over two points in central Europe, taking **at least six weeks** to do so. His forecasts were a **dismal failure!**

1950: The **ENIAC** (Electronic Numerical Integrator and Computer) was used to create the **first** weather forecasts via **computer**

1954: Carl-Gustav Rossby's group at the Swedish Meteorological and Hydrological Institute used the same model to produce the **first operational forecast**

Brief History of Weather Models

"Perhaps some day in the dim future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to the information gained. But that is a dream." – Lewis Fry Richardson, 1922 **NWP History**

1966: West Germany and the United States began producing **operational** forecasts based on **primitiveequation** models, followed by the United Kingdom in 1972 and Australia in 1977

Late 1960s: The first general circulation climate model that combined both oceanic and atmospheric processes was developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL)

1970s and 1980s: Model Output Statistics (MOS)

relating the output of a numerical weather model and the ensuing conditions at the ground

1990s to present: Model **ensemble** forecasts have been used to help define the forecast uncertainty

Initialisation & Computation

Block diagr	am for Nu	FIGURE 6 merical
Weather	Prediction	
Howrly Surface	other Measured Observations	
observations	Observations /]	
Initial Condition of the	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Forecast Condition of the
Atmosphere (Model starting point)	Equations run forward in	Atmosphere
t tuitte Weat	l time	
Data ball	pervations pervations per and 122)	

© Commonwealth of Australia 2021. Bureau of Meteorology

Ready, Set, Go

Start: An initial analysis is the start point for our primitive equations. Therefore, the model is **initialised** with a global set of observations and **rates of change**.

Go, Stop: These rates of change **predict** the state of the atmosphere a **short time** into the **future**; the time increment for this prediction is called a **time step**.

Go again: This future atmospheric state is then used as the starting point for **another application** of the predictive equations to find **new rates** of change, and these new rates of change predict the atmosphere at a yet **further time step** into the future. This time **stepping is repeated** until the solution reaches the desired forecast time.

Length of time step: is chosen to preserve numerical stability. For global models, the length of time step is of the order of tens of minutes.

Chaos Theory Could Save the World, by Rob Adamson

© Commonwealth of Australia 2021. Bureau of Meteorology

Huge amounts of Data and Chaos

Computing Power: Manipulating the **vast** datasets and performing the **complex** calculations necessary to modern numerical weather prediction requires some of the world's most powerful **supercomputers**

Skill: Even with the power of supercomputers, the forecast skill of weather models only extends to about six days

Chaos: The fundamental problem lies in the **chaotic nature** of the **partial differential equations** that govern the atmosphere. It is impossible to **solve** these equations **exactly**, and **small errors grow** with time (doubling about every five days)

And also: We can't sample every point on the globe, while physical processes occurring at sub-grid scale need to be approximated via parameterisations. These add to the errors over time.

Program in the Pacific

Deterministic vs Ensemble Predictions

Top: Weather Research and Forecasting model simulation of Hurricane Rita (2005)

Bottom: The spread of the operational multi-model ensemble

© Commonwealth of Australia 2021. Bureau of Meteorology

One is not enough

A single run of a model will produce one result of the atmosphere some time into the future – a deterministic prediction

But **chaos** and the **inherent uncertainties** in the prediction method mean that we're not understanding all the possible outcomes by relying on a single prediction

By making **repeated** (e.g. 20 or 30 times) **small variations** to the **initial** conditions, we sample a greater part of the prediction spectrum \rightarrow an **ensemble of predictions** is the result

Ensemble predictions can make **probability estimates** e.g. chance of NINO3.4 reaching El Niño levels by August

Ensemble predictions can be made using one model (e.g. ACCESS-S ensemble) or a Multi-Model Ensemble using various climate models.

Difference between weather and climate models

Weather Prediction

Short-term accuracy is the key, so the initial conditions need to be very close to reality

Interested in daily or sub-daily timescales

Small ensemble spread is desirable – want high probabilities of weather outcomes for days one to five, i.e. close to a **deterministic prediction**

Can run at **high resolution** (both spatial and temporal) to increase the accuracy – depends on computing power

Run **several times per day** to accommodate the continuous stream of observations

Forecast duration is one to two weeks

© Commonwealth of Australia 2021. Bureau of Meteorology

Climate Prediction

Less emphasis on the accuracy of the initial conditions

Interested in timescales from **multi-week to multimonth**

Larger ensemble size – want to sample more possible trajectories for the evolution of the climate system

Run at **lower resolution** (both spatial and temporal) because of the larger ensemble size and longer forecast duration

Run a **few times per week** – interested in climate anomalies not high frequency weather variations

Forecast duration is three to six months

We are simulating 100 of these!

wetter than average season for the location is 80% (but 20 are drier!).

Ensemble Climate Predictions - Examples Climate and Oceans Support

Difference from average sea surface temperature forecast for

December 2020

December 2020 to February 2021 20°N 20°N Marshall Is 10°N 10°N Federated States of Micronesia Panua New Kiribati Kiribat Tokelau 10°S French Polynesia 20°S 20°5 30°S 30°S 120°E 150°E 130°W 120°E 140°F 150°E 160°E 170°F 180 160°W 150°W 130°F 140°F 160°F 170°E 180 170°W 160°W 150°W 140°W 1309 170°W -4.0 -3.0 -2.0 -1.2 -0.8 -0.4 0.4 0.8 1.2 2.0 3.0 4.0 40 50 60 70 80 40 50 60 70 80 90 90 Difference from average (°C) Below normal (%) Near normal (%) Model: ACCESS-S1 Model run: 30/11/2020 Model: ACCESS-S1 © Commonwealth of Australia 2020, Australian Bureau of Meteorology Base period: 1990-2012 Issued: Map not issuec © Commonwealth of Australia 2020, Australian Bureau of Meteorology Base period: 1990-2012 Shapefile data extracted from Flanders Marine Institute (2019), Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at http://www.marineregions.org/ Shapefile data extracted from Flanders Marine Institute (2019), Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at http://www.marineregions.org/.

Ensemble Mean SST anomaly.

Tercile rainfall outlook with probabilities derived from Ensemble spread

140°W

40 50 60

130°W

70 80

Above normal (%)

90

Model run: 02/11/2020

Issued: 05/11/2020

Tercile rainfall probabilities for

Ensemble Climate Predictions - Examples

Ensemble Mean MJO index forecast plus individual ensemble members

Ensemble Mean NINO3 SST index forecast plus individual **ensemble members**