

Climate and Oceans Support Program in the Pacific

ACCESS-S Workshop

MODULE: ACCESS-S Model Design

- ACCESS-S model implementation
- Dynamical seasonal prediction
- Data assimilation
- Ensemble generation
- Forecasts and hindcasts
- Model skill

Expected learning outcomes

- Basic understanding of how the ACCESS-S model works, including inputs
- Understanding of how forecasts and hindcasts are calculated in ACCESS-S
- Understanding of model skill calculations

These outcomes are important for understanding and interpreting ACCESS-S outputs and products, particularly model skill

ACCESSS-S Version 1

- UKMO initial conditions and local ensemble generation
- Model run daily (99 ensembles per day)
- Lead time 6 months
- Hindcast period to 23 years (11 ensembles per start time)

ACCESS–S Version 2 (operational late 2021):

- Bureau data assimilation and ensemble generation
- Increase hindcast period 37 years
- Lead time:
 - Multi-week: 6-weeks
 - Seasonal: 9 months
 - Multi-year: 5-years (investigate potential for forecasts on this timescale)

Comparing ACCESS-S to POAMA-2

Clim		POAMA-2	ACCESS-S
r	Atmospheric model	Bureau Atmospheric Model (BAM) ~10 years old	Latest UKMO atmospheric model (GC2)
	Atmospheric resolution	Horizontal: 250 km (T47) Vertical: 17 levels (does not extend into the stratosphere)	Horizontal: ~60 km in the midlatitudes (N216) Vertical: 85 levels (extending into the stratosphere)
	Land surface model	Simple bucket model for soil moisture and 3-layers for soil temperature.	State-of-the-art land surface model (Joint UK Land Environment Simulator; JULES) with 4 soil levels.
	Ocean model	Modular Ocean Model (MOM version 2, about 13 years old).	Latest European ocean model (Nucleus for European Modelling of the Ocean; NEMO) which is part of the UKMO coupled model GC2.
	Ocean resolution	Horizontal: ~200 km x 100 km Vertical: 25 levels, with thicknesses ranging from 5 m near the surface to almost 1000 m near the bottom	Horizontal: 25 km Vertical: 75 levels, with thicknesses ranging from 1 m near the surface to about 200 m near the bottom (6000 m depth)
	Sea ice model	No sea ice model (climatological sea ice is prescribed).	Latest sea ice model developed by the USA and UK (Los Alamos sea ice model; CICE) which is part of the UKMO coupled model GC2.
	Model Physics	>10 years old	Latest from UKMO and collaborators

A collaboration with the UKMO (Unified Model Partnership)

$$\begin{split} &d\overline{\mathbf{V}}/dt + fk\times\overline{\mathbf{V}} + \nabla\overline{\phi} = \mathbf{F},\\ &d\overline{T}/dt - \kappa\overline{T}\omega/p = Q/c_p, \end{split}$$

 $abla \cdot \overline{\mathbf{V}} + \partial \overline{\omega} / \partial p = 0,$ $\partial \overline{\phi} / \partial p + R \overline{T} / p = 0,$ $d \overline{q} / dt = S_q.$

- ACCESS-S version 1:
- UKMO GC2 (Global coupled model configuration 2)
- Same model used currently by UKMO for seasonal prediction (GloSea5-GC2)

Snapshot over the Australian region from a single ACCESS-S forecast (but it is a global model)

© Commonwealth of Australia 2021. January or meteorology

ACCESS-S

POAMA

- Model build, Supercomputer implementation DONE
- Production of hindcasts NOW
- Verification and calibration NOW
- Introduction of ACCESS-S outlooks into service DONE
- Outlooks issued more frequently (twice a month) DONE

Example: Mean rainfall (mm/day) for spring (SON)

Australian climate better represented

© Commonwealth of

- ACCESS-S is higher resolution and more accurate compared to previous models
- Currently running ACCESS-S1 but will eventually move to ACCESS-S2
- New outlook periods include:
 - Weeks 2, 3, 2-3, 3-4, season 2
- ACCESS-S features an atmospheric model, a land surface model, an ocean model and a sea ice model

Discussion question

• How would you use the new outlook periods available in ACCESS-S?

- Initial state is complete 3D description of atmosphere/land/ocean/ice on model grid
- · Coupled model evolves initial state forward in time
- Forecast depends on initial state e.g. why this year different from next
- · Forecast depends on ability of present state to influence the future
- · Forecast skill depends on ability to depict initial state

- Estimating the 3D state of the system is critical at the start of the forecast. These include:
 - Ocean (most important for seasonal)
 - Land surface
 - Ice
 - Atmosphere (we rely on NWP)
- Observations are critical for data assimilation
- There are several data assimilation techniques that combine sparse data and models (e.g. Ensemble Kalman Filter)
- Data assimilation is becoming more complex than coupled models
- Need data assimilation for the hindcasts (as well as real-time forecasts)

[©] Commonwealth of Australia 2021. Bureau of Meteorology

NCAR reanalyses)

Creating an ensemble using initial condition uncertainty

BoM perturbation scheme: perturb the initial conditions of the atmosphere for a given forecast start – burst ensemble

Lagged initial conditions (use past days of the burst ensemble to make an even bigger ensemble)

Representing uncertainty and chaos

Monthly and seasonal forecasts: ensemble Generation

Weekly and fortnightly forecasts: ensemble Program in the Pacific Brogram in the Pacific

- Better accuracy closer to the forecast start date.
- Therefore, in addition to the 11 ensembles run per day, another 22 ensembles are run out to 6 weeks.
- This means a 99 member fortnightly forecast can be made from 3 days of forecasts.

Daily 500 hPa Geopotential Height (20-60S) 1.4 Underdispersed 1.2 RMSE (overconfident) Normalized with Obs Std Spread_{ens} < RMSE 1.0 0.8 Consistent/reliable A) UKMO: Ensemble 0.6 Spread_{ens} ≈ RMSE Ensemble spread from stochastic physics only B) ACCESS-S1: Ensemble 0.4 from stochastic physics AND perturbed initial 0.2 conditions 0.0 10 20 25 15 30 35 5 0 Lead Time (day)

© Commonwealth of Australia 2021. Bureau of Meteorology

¹ May start, 5-member ensemble

Data assimilation and ensemble generation Summary Summary

- Models are sensitive to the initial conditions, and require a complete model grid of observations at the beginning of each model run.
- The model grid of observations is created using Data assimilation, a process that can be as complex as climate models themselves.
- ACCESS-S runs 11 slightly different model runs each day, creating an ensemble
- Each ACCESS-S outlook has a 99 member ensemble
- The accuracy of models improves closer to the model start date

Discussion questions

Name an example of an observation that would be used for data assimilation